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Abstract—Mobile robots require comprehensive scene under-
standing to operate effectively in diverse environments, enriched
with contextual information such as layouts, objects, and their re-
lationships. Although advances like neural radiance fields (NeRF's)
offer high-fidelity 3D reconstructions, they are computationally
intensive and often lack efficient representations of traversable
spaces essential for planning and navigation. In contrast, topo-
logical maps are computationally efficient but lack the semantic
richness necessary for a more complete understanding of the en-
vironment. Inspired by a population code in the postrhinal cortex
(POR) strongly tuned to spatial layouts over scene content rapidly
forming a high-level cognitive map, this work introduces Topo-
Field, a framework that integrates Layout-Object-Position (LOP)
associations into a neural field and constructs a topometric map
from this learned representation. LOP associations are modeled by
explicitly encoding object and layout information, while a Large
Foundation Model (LFM) technique allows for efficient training
without extensive annotations. The topometric map is then con-
structed by querying the learned neural representation, offering
both semantic richness and computational efficiency. Empirical
evaluations in multi-room environments demonstrate the effective-
ness of Topo-Field in tasks such as position attribute inference,
query localization, and topometric planning, successfully bridging
the gap between high-fidelity scene understanding and efficient
robotic navigation.

Index Terms—Bioinspired robot learning, cognitive map,
mapping, neural field, representation Learning.
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1. INTRODUCTION

OBILE robots are rapidly moving from research labs
M to widespread use. For these robots to operate au-
tonomously in complex environments, a deep understanding of
their surroundings is crucial [1]. Hierarchical graph-like scene
representation along with detailed environmental reconstruc-
tion enabling efficient path planning, will be key for robotic
deployment in real-world scenarios [2]. This necessity arises
from a fundamental dual challenge in robotics: achieving accu-
rate geometric reconstruction to facilitate precise local obstacle
avoidance and semantic interpretation, while simultaneously
leveraging hierarchical abstraction to enable computationally
efficient global planning and navigation.

Recently, detailed environmental reconstruction has made
great progress in producing lifelike 3D reconstructions [3],
[4], [5], in which NeRF [6] is a prime instance. As improve-
ments, works like [7], [8] introduce semantic information for
better scene understanding. Further, features powered by Large-
Foundation-Models (LFMs), trained on massive datasets across
various scenes, are employed with general knowledge for open
scene understanding [9], [10], [11], [12], [13], [14]. However,
it is computationally demanding and lacks layout information
using detailed neural fields for planning and navigation.

In contrast, existing topological maps for path planning and
navigation in complex environments are often derived from
LiDAR Simultaneous-Localization-and-Mapping (SLAM) us-
ing 3D dense submaps [15] or visual SLAM by clustering
free-space regions and extracting occupancy information from
point clouds [2]. While this approach increases path planning
accuracy, computing topology with traditional methods comes
with high computational costs and tends to strip away essen-
tial semantic information, reducing the robot’s ability to fully
understand the environment, which is critical for advanced au-
tonomous functions such as language/image-prompted localiza-
tion and navigation.

To this end, we propose to build a neural representation as
spatial knowledge and construct a topometric map based on
this, originating from a brain-inspired approach. Theoretically,
neuroscientists have long discovered that animals process their
surroundings using topological coding, forming what is known
as a “cognitive map” [16], a concept embodied by place cells
(hippocampal neurons that activate in specific places to form
place fields) [17]. These place cells, along with spatial view cells
(neurons selectively responsive to different spatial perspectives,
aiding in the integration of visual and spatial information) [18],
respond to specific scene contents. More recently, research has
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shown that a population code in the postrhinal cortex (POR,
a brain region serves as a key input area to the hippocampal
system) is strongly tuned to spatial layout rather than scene
content [19], capturing spatial representations relative to en-
vironmental centers to form a high-level cognitive map from
egocentric perception to allocentric understanding [20].

Most related works either do not explicitly represent the
layout features [21] or build the topo-map in a clustering and
incremental mapping way [22], [23]. On the contrary, we in-
tuitively abstract the neural representations of space to build
topo-field in three key aspects: 1) The cognitive map corresponds
to a topometric map, which uses graph-like representations to
encode relationships among its components, e.g. layouts and
objects. 2) The population of place cells is analogous to a
neural implicit representation with position encoding, enabling
location-specific responses. 3) POR, which prioritizes spatial
layouts over content, aligns with our spatial layout encoding of
connected regions.

This work proposes a Topo-Field, integrating the Layout-
Object-Position (LOP) association into neural field training and
constructing a topometric map based on the learned neural
implicit representation for hierarchical robotic scene under-
standing. By inputting RGB-D sequences, objects and back-
ground contexts are encoded separately as contents and layout
information to train a neural field, forming a detailed scene
representation. A contrast loss against features from LFMs is
employed, resulting in little need for annotation. Further, a
topometric map is built by querying the learned field, which
is efficient for navigable path planning. To validate the effec-
tiveness of Topo-Field, we conduct quantitative and qualitative
experiments on several multi-room apartment scenes evaluating
the abilities including position attributes inference, text/image
query localization, and planning.

Our contributions can be listed as follows:

® PBrain-inspired Topo-Field: We introduce a Topo-Field
that combines neural scene representation with efficient
topometric mapping, enabling hierarchical robotic scene
understanding and navigable path planning.

® Cognitive Map Representation: Inspired by the population
code in postrhinal cortex (POR) strongly tuned to spatial
layouts over scene content rapidly forming a high-level
cognitive map, we incorporate the concepts of neural rep-
resentations of spatial layouts, objects, and place cells to
construct hierarchical robotic topo-maps.

® Layout-Object-Position (LOP) Representation: We de-
velop an implicit neural representation associating layout,
object, and position information, which is explicitly super-
vised using an LFM-powered strategy, requiring minimal
human annotation.

o Topometric Map Construction: We propose a two-stage
pipeline for building a topometric map by querying the
learned neural field and validating edges among vertices
using LLMs, enabling efficient path planning.

II. RELATED WORKS

A. Dense Representation With Neural Radiance Field

Detailed 3D scene reconstruction has made great efforts in
producing lifelike results, among which NeRF (Neural Radi-
ance Fields) [6] has widely attracted researchers’ attention. A
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popular research direction is to integrate semantics with NeRF
to achieve a more comprehensive understanding of scenes [7],
[8]. Recently, several robotic works have demonstrated that
features from LFMs can be used for self-supervised learning,
which reduces the costly manual annotation [9], [10], [11], [12],
[13], [14]. However, they focus on object semantics but do
not include layout-level features. RegionPLC [21] considered
region information but with no explicit representation of layout
features. In contrast, in our work, CLIP [24] and S-BERT [25]
are employed to generate vision-language and semantic features
for objects and layout respectively.

B. Topometric Map for Scene Structure Understanding

Using detailed neural fields for planning and navigation is
computationally demanding, on the other hand, hybrid topo-
metric mapping has been known for its efficiency in terms of
managing the information and being queried for downstream
tasks [26], [27]. However, most topological maps have not
introduced information such as semantics. Concept-graph [28]
made a step forward utilizing LFM to model the object struc-
ture with topology. SceneGraphFusion [29] created a globally
consistent scene graph by incrementally fusing predictions of a
graph neural network (GNN). However, they focused on the
scene contents at object level and neither of them included
layout-level information. CLIO [22] built a task-driven scene
graph forming task-relevant clusters of primitives. HOV-SG [23]
proposed using feature point cloud clustering and mapping in
an incremental approach. Unlike the incremental mapping and
clustering-based method, We query the learned representation
of object and region separately with fewer vertices representing
the same scene. Each vertice clearly represents only one object
or region with its attributes. Hydra [30] realized impressive
real-time 3D scene graph reconstruction, however, it faced chal-
lenges labeling some of the topology vertices and relationship
of edges because of the costly and close-set segmentation. On
the contrary, we leverage open-set vision-language and semantic
encoders for feature extraction and employ LLM to help validate
the edge relationship.

C. Spatial Understanding With Layout Information

Generally, topology is built based on clustering from oc-
cupancy information or Voronoi diagrams [31], regardless of
the contents and layout relationship. However, neuroscience
findings suggest a mechanism to form a high-level cognitive map
from egocentric perception to allocentric representation [16],
[20]. Place cells [17], as the embodiment of cognitive map,
together with spatial view cells show activity to contents [18].
Recently, Patrick et al. [19] showed that a population code in
the POR is more strongly tuned to the spatial layout than to
the content in a scene. This suggests that there are specialized
cells and signaling mechanisms to process layout in the process
of scene understanding, which captures the spatial layout of
complex environments to rapidly form a high-level cognitive
map representation [20]. Inspired by the above research, we
mimic the neural scene understanding mechanism by employing
egocentric neural field with content and layout knowledge to
construct allocentric topometric map.
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Fig. 1. TIllustration of the Topo-Field strategy and capabilities. Hierarchically
dividing scene information into layout, object, and position to model them
explicitly, layout-object-position associated knowledge enables robots with a
topometric map representing the scene and planning navigable path to realize a
more comprehensive spatial cognition.

III. OVERVIEW

This work proposes a framework that integrates Layout-
Object-Position (LOP) associations into a neural field and con-
structs a topometric map from this learned representation. The
overview strategy is shown in Fig. 1. To achieve this, first, we
need to train a scene-dependent implicit function, denoted as

F:R3® - R", (1)

where for any 3D point P in space, F(P) is supposed to be
its corresponding embeddings £{(e,, es)} € R™. & consists of
vision-language embedding e,, and semantic embedding e,. We
constrain (e,, ;) to match with embedding space of pre-trained
vision-language and language models. The target embeddings
are encoded from observed images of the scene and relationships
of 3D points and embeddings are constructed based on back-
projecting pixels with corresponding depth and camera poses.
Target feature processing and training strategy are described in
Sections IV-A and I'V-D. Learned field applications are discussed
in Section IV-C1.

Based on the trained F' and a region set of the scene
{r1,r2,...,7m}, we sample 3D points p from the scene, cal-
culate and compare cosine similarity of F'(p) with embeddings
of language-encoder-processed {r1,72,...,7,} to get region
layout distribution of the scene. Points that belong to the same
regions are clustered and form a region vertex set. Objects in
images perceived in the previous process to train F' form the
object vertices. Their relationship is inferred with the help of
LLM. In this way, a topometric map is built denoted as

G=(V.E), 2

where vertices V' include object vertices v, and region vertices
v, and edges F include edges between objects e, ,, edges
between regions e,_,, and edges between object and region
e,_r. The topo-map architecture and construction pipeline are
described in Section I'V-C2.

IV. METHOD

A. Target Feature Processing

RGB-D image sequences with poses are accepted as input
for training F'. For RGB image sequences, depth point clouds
and camera poses can also be estimated through COLMAP [32]
or simultaneous localization and mapping (SLAM). The only
employed GT annotation is the layout distribution of envi-
ronment. The region of each 3D point P is denoted as rp €
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R ={ri,ro,..., ¢}, where ¢ is the number of regions. Such
information is available in datasets like Matterport3D [33],
whereas partitioning the buildings needs little human labor. In
most human-made buildings spatial, layouts are easily available
divided by straight walls. Simply drawing lines from top-down
view according to walls can form a rule to bound 3D points to
different regions.

For object pixels embedding e, processing, the pipeline
follows CLIP-Fields [9] employing CLIP [24] C' and Sentence-
BERT [25] S as encoders. The difference is the semantic label of
objects is prompted in the form of “I in r”, where [ is the object
label and r is the region label. What’s more, the background
appearance is also considered which we proposed to include
context information for region layout. For background pixels
Dy, per-pixel feature of image I is encoded. Its related region
Tp, € R is regarded as the text label and embedding of py can
be denoted as e, = {C(I),S(rp,)}-

Then, pixel-wise embeddings are back-projected to 3D space
based on depth and pose and form a distilled 3D feature point
cloud. Consequently, the target feature space £{(e,,es)} con-
sists of object and layout features, where (e, €5) directs from
{€p, s €py } po.ppcp- The pipeline is shown in Fig. 2.

B. Scene Neural Encoding

Our proposed Topo-Field involves an implicit mapping func-
tion to encode the 3D position into a spatial vector representa-
tion g : R? — R? and separate heads h : R — R™ processing
encodings to match the target feature space £{(e,,es)}. we
employ the Multi-scale Hash Encoding (MHE) introduced in
Instant-NGP [34] as g with embedding dimension d = 144. As
for heads, we follow [9] and employ Multi-Layer Perceptron
(MLP) network h, : R¢ — f, for obtaining vision-language
features and h, : R? — fs for semantic features. The model is
shown in Fig. 2.

In this way, given a posed RGB-D image, the target feature of
each pixel is processed as mentioned in Section I'V-A denoted as
E{(ey, es)}. Atthe same time the related pixel in depth image is
back-projected into 3D space according to depth and pose value
and processed by the above mentioned g, h to form (f,, fs). A
contrastive loss is conducted between (e, e;) and (fy, fs) to
train the neural representation. Training details are declared in
Section IV-D.

C. Topometric Mapping

With the function and feature representation mentioned
above, we can integrate 3D positions with the object and region
information and construct a topometric map. The topo map
construction process is formed in a mapping and updating strat-
egy, while the implicit neural representation is introduced and
queried as scene knowledge in this process. Detailed pipeline is
introduced as follows.

1) Knowledge From Learned Neural Field: Position At-
tributes Inference: Using spatial 3D point P as input, assuming
a collection of space regions R (e.g., “living room”, “bath-
room”, “bedroom”, ...), we compute the vision-language fea-
tures Crp = {C(r1),C(rz2),...,C(ry)} and semantic features
Sr ={5(r1),S(r2),...,S(rm)} using CLIP [24] encoder C'
and Sentence-BERT [25] encoder S, where m is the number of
rooms. Then the cosine similarity between F'(P) = {(f,, fs)}p
and {Cgr,Sgr} is calculated to find the most likely region to
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Fig. 3. Qualitative comparison of text query localization results among state-of-the-art methods and our method with text input in the form of “object in the
region”. Blue box shows the ground truth bounding box of object. Red box means miss-predicted box, while green box means the correctly predicted results.
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Fig. 4. Capabilities of the learned neural field. (a) The attributes inference
using position input. (b) The LOP association helped localization of text and

image queries.

which P belongs. The inference process is shown in Fig. 4(a).
Similarly, the object information of P can be inferred with the

same approach replacing the region set R with object set O.

Localization with Text/Image Query: For natural language text
input ¢ (e.g., “cup in the bedroom”), most existing robotic scene
representations struggle to locate specific objects of interest
(e.g., differentiating between cups in the living room and the bed-
room). However, with our proposed Topo-Field that includes re-
gion information, we can calculate the cosine similarity between
{C:, S:} and the embeddings F'(P*) = {(f», fs)} p- to find the
most likely position of queries, where P* are sampled from 3D
points set to train F'. As for image input I, we can calculate
the cosine similarity of {C;, S} with F'(P*) = {(fu, fs)}p+ in
the same way to find the 3D points set with highest similarity.
Localization process of text query and image query is shown in
Fig. 4.

2) Topometric Map Construction: As defined in Section III,
topometric map G = (V, E) consists of vertices and edges.
We define a vertex v : {id, vertex_type, class, bounding_box,
caption} and edge e : {id, edge_type, start_vertex, end_vertex,
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Fig. 5.
approach localizes the position of queried image in an exact smaller range.

relationship, caption }. Inspired by the mental cognitive map rep-
resentation, such allocentric topo-map is constructed by lever-
aging the neural field F' learned from egocentric observations as
scene memory and querying it.

Mapping: We first averagely sample k£ points P; _ j in
the environment by dividing the scene into voxel grids of
0.5m x 0.5m (for performance-efficiency trade-off according
to our experiments) from top-down view and regarding the center
point of each voxel as sampled point. The region of each point
is inferred according to Section IV-C1. Points p* belonging to
the same predicted region 7; is clustered to form the region
vertex v, whose {bounding_box} attribute is set according
to the upper-bound and lower-bound of px positions. {class}
and {caption} is set according to the region label. For object
vertex, inheriting the object detection results by Detic [35] when
processing target embeddings illustrated in Section IV-A as [9],
objects with high confidence (more than 60%) are recorded as
object vertices candidates. Their attributes are set according to
the detection results. With the mapped vertices, we leverage
LLM to describe the layouts with connectivity, distances, and
relationships of regions and objects in JSON format based on
the vertices’ attributes and poses. During this process, edges
are built among vertices and relationships are validated with the
help of LLM. For object-object edge e,_,,, we follow [28] which
mainly considers bounding-box overlap and position relations.
For object-region edge e,_,., we consider an object belongs to
the region if the object bounding box is in the region bounding
box and filter the unreasonable relation noise powered by LLM
(e.g., it’s almost impossible that a bike is in bedroom). For
region relationships, the adjacency and position relationship
(e.g., north, south, east, west, ...) of region bounding box is
considered. Fig. 2 shows the pipeline of metric-topological map
construction.

Updating: RGB-D image sequence for training F' or a newly
captured sequence can be used for constructed map fine-tuning.
For object vertices, if an object is detected by more than 3
frames in sequence, the object bounding box will be compared
with the constructed vertices. A new vertex will be added if
no existing vertex corresponds to it. For region vertices, we
calculate embeddings F'(p;) of sampled back-projected pixels
pr in each image I. F'(p;) will be matched with the constructed
region set 71, ., and extent of a region r will be updated if

CLIP-Field (Shafiullah et al., 2022)
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View localization results

VLMaps* (Huang et al., 2023) Topo-Field(Ours)

Qualitative comparison of image query localization results in heatmaps form among state-of-the-art methods and our method with image input. Our

F(pr) matches {C,,S,} and p; exceeds the {bounding_box}
extent of vertex v,.. LLM will be called to update edges each 50
frames. Fig. 6 shows an example of the initially mapped region
distribution and the updated one.

D. Training

The pipeline of ground truth data generation is described
in Section IV-A to train F. To fit the implicit representation
introduced in Section IV-B to the target feature space, we de-
sign the loss function through a contrastive approach. For the
vision-language feature optimization, the tempered similarity
matrix on point P is denoted as

Sim, = T{fv}P{ev}P’ (€)

where 7 is the temperature term, {f,}p and {e,}p is the
calculated implicit representation feature and target embedding
according to P. Using cross-entropy loss, the vision-language
loss can be calculated as

L, = —exp(—distp) (H (Sim,) + H (Sim,T)), (4

where dist p is the distance from P to camera, and H is the cross-
entropy function. For the semantic loss, similarity on points P
can be calculated as

Sims = T{fs}P{es}P~ (5)
Similarly, semantic loss can be denoted as
L, = —conf (H (Sim,) + H (Sim,")) , (6)

where conf is the prediction confidence from the detection
model. The total loss is computed by:

L=L,+ L. (7

In our experiments, an NVIDIA RTX3090 GPU is utilized and
the batch size is set to 12544 to maximize the capability of our
VRAM. As model instances, CLIP with SwinB is employed
in Detic [35], CLIP [24] encoder is ViT-B/32 and Sentence-
BERT [25] encoder is all-mpnet-base-v2. The MHE has 18 levels
of grids and the dimension of each grid is 8, with log, hash map
size of 20 and only 1 hidden MLP layer of size 600. We train the
neural implicit network for 100 epochs with optimizer Adam,
employing a decayed learning rate of 1 ' — 4 and 3E — 3 decay
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Topometric map construction example. The topometric map is represented as a graph from a top-down view. Map structure shows number of vertices

and edges. A planning path from a seen view to target is shown as an example employing topometric map, the path is highlighted in green showing the related
vertices and edges. Visited vertices are listed on the right. The line with gradient colors represents the waypoints based on the planning results while different colors
represent different predicted regions of waypoints. On the right, we show the the initially mapped region distribution and the updated one. Obviously the updating

process fill the gap caused by sparse point sampling for fast map initialization.

rate. Each epoch contains 36 samples. Codes and scripts are
released in supplementary for reproducibility.

V. EXPERIMENTAL RESULTS

Our experiments are conducted on real-world datasets to
validate the established layout-object-position association. The
data environment is of single-floor residential buildings with
multiple rooms which is the common working scenario of
household robots widely studied in this field. We employed
Matterport3D [33] as well as apartment environment [36] dataset
to demonstrate that our approach can be generalized in diverse
scenarios.

A. Position Attributes Inference

To demonstrate the built LOP association integrates positions
with layout features, we designed experiments that accept 3D po-
sitions as input to infer the region information. For quantitative
evaluation, we divide the RGB-D sequences into training and
testing setsrandomly in the 8 : 2ratio. RGB-D images in training
set are employed to train Topo-Field and compared methods. 3D
positions back-projected from the depth-pose tuples in the test
set are leveraged as test input. As described in Section IV-C1, for
each input 3D position p, point-wise feature F'(p) is calculated
and compared with the embedding £x of the given region set
R, validated by cosine similarity. The region with the highest
embedding similarity is considered as prediction result of the
position and compared with the GT belonged region. The region
prediction accuracy is employed as metric. Table IT shows the
region inference results on 10 real-world scenes in Matterport
3D [33] with different scales and layouts indicating the average
accuracy of Topo-Field exceeds 85%.

Baselines: The same training and testing set is leveraged
among our method and baselines. For neural-field-based meth-
ods (CLIP-Fields [9], LERF [11], and ours), the training epochs,
learning rate, and embedding dimensions are aligned. The
vision-language encoder, which is employed to generate the
target label embedding, is kept the same as their letter and pub-
licly available code base. For VLMaps [10], the LSeg [37] and
CLIP [24] are employed. For RegionPLC [21], we implemented
it with the Matterport3D data in the annotation-free open-world
manner as described in its letter for fairness. For all baselines,

TABLE I
QUANTITATIVE COMPARISON OF TEXT QUERY LOCALIZATION RESULTS ON
DIFFERENT SCENES FROM THE MATTERPORT3D DATASET

Methods Scenel Scene2 Scene3 Scened
Dist. Acc. Dist. Acc. Dist. Acc. Dist. Acc.
CLIP-Field(2022) 2.97 0.24 335 021 298 0.20 3.06 0.17
VLMaps(2023) 278 0.28 3.63 0.16 3.05 0.24 3.12 0.12
LERF(2023) 2.86 0.32 282 0.11 349 0.17 3.04 0.20
HOV-SG(2024) 1.24 0.76 138 0.79 0.82 0.81 0.92 0.84
Topo-Field(Ours) 0.92 0.85 0.86 0.84 0.36 0.95 0.27 0.97

The average distance (m) from targets to localized point clouds and the accuracy
evaluating whether predicted positions are in correct regions are used as metrics.

the point-wise embeddings from each scene representation are
directly compared to the accordingly encoded g leveraging
the encoder mentioned in separate approaches in the cosine
similarity manner.

B. Localization With Prompt Queries

Localization with Text Queries: For objects of the same cat-
egory in different regions, we input the linguistic text query in
the form of “object in the region” and infer the specific location
of the target, comparing the results with the predictions from
current state-of-the-art vision-language algorithms. Fig. 3 and
Table I show qualitative and quantitative results on different
scenes demonstrating our advantage in accuracy and distance
from targets. The average distance (m) of predicted point cloud
and ground truth point cloud is evaluated, together with counting
whether the center of predicted points is in the correct region.
Ground truth comes from the Matterport3D-provided object
instance labels. As the results show, topology indeed helps
layout-aware problems, specifically the explicit representation
of layout information.

Localization with Image Queries: To validate the help of
region information in the image view localization task, the
localization results are shown in Fig. 5 in the form of heatmaps
and Table III shows the quantitative results which evaluates
the weighted average distance of the target view and localized
point cloud among all samples in a scene, using similarity as
weight. VLMaps* is a self-implemented version with CLIP [24]
encoder, because origin VLMaps [10] does not implement the
image localization. Results show that Topo-Field constrains
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TABLE II
COMPARISON OF POSITION ATTRIBUTES INFERENCE RESULTS ON THE TEST SET OF DIFFERENT SCENES FROM THE MATTERPORT3D DATASET

Methods Scenel Scene2 Scene3 Scened Scene5 Scene6 Scene7 Scene8 Scene9 Scenel(
CLIP-Field(2022) 0.242 0.165 0.130 0.142 0.127 0.138 0.227 0.200 0.102  0.060
VLMaps(2023) 0.177 0.194 0.127 0.098 0.148 0.187 0.199 0.221 0.092  0.087
LERF(2023) 0.268 0.189 0.165 0.153 0.136 0.169 0.216 0.252 0.110 0.091
RegionPLC(2023) 0.290 0.202 0.173 0.168 0.152 0.154 0.243 0.248 0.086  0.088
HOV-SG(2024) 0.852 0.871 0.842 0.887 0.855 0.860 0.243 0.882 0.834 0.813
Topo-Field(Ours) 0.886 0.900 0.884 0.894 0.872 0.858 0.901 0.897 0.821  0.839
Position Samples 169k 185k 111k 112k 106k 176k 130k 121k 205k 211k

The region prediction accuracy of sampled 3D points is used as metric.

TABLE III
QUANTITATIVE COMPARISON OF IMAGE QUERY LOCALIZATION RESULTS WITH
OTHER METHODS

Methods Scenel Scene2 Scene3 Scened
CLIP-Field(2022) 2.541 2.748 2922 2.651
VLMaps*(2023)  2.112 1.894 1.181 1.595
LERF(2023) 1.276  1.175 1.148 1.129
AVLMaps(2023) 1.228 1.205 0.852 0.975
Topo-Field(Ours) 0.742 0.830 0.374 0.327

The similarity weighted average distance (m) between the
target view point cloud and the predicted point cloud is
evaluated. VLMaps* is a self-implemented version with image
localization ability.

TABLE IV
TOPO-GRAPH VERTICES AND EDGES ACCURACY COMPARISON. EVALUATION
METRICS FOLLOW THE CG [28]

Methods Object vertex Region vertex Edge
SGF(2021) 0.57 - 0.86
Hydra(2022) 0.71 * 0.88
CG(2024) 0.69 - 0.92
CLIO(2024) 0.71 0.95 0.93
HOV-SG(2024) 0.72 091 0.96
Topo-Field(Ours) 0.74 1.00 0.96

*Hydra does not predict region vertex semantics.

the localization results to a smaller range in the exact region.
We sampled more than 40 images on each scene from Apart-
ment [36] and Matterport3D [33].

C. Topometric Map Construction

Fig. 6 shows an example of the built topometric map. Lay-
out region vertices, object vertices with bounding boxes, and
entrance vertices connecting regions are shown with edges rep-
resenting relationships. A planned navigable path is shown in
the graph from an observation in family room to the TV room
sofa. We also compare the graph structure with graph-based
method shown in Table IV, indicating that Topo-Field employs
both object and region vertices with high accuracy.

D. Ablation Study

Fig. 7 and Table V show the ablation of our neural field LOP
encoding strategy and feature fusion where: 1) CLIP-Field [9]
means the origin implementation of CLIP-Field. 2) Based on
CLIP-Field, Baselinel integrates region ground truth labels
and encodes them with CLIP and S-BERT to generate target
embeddings. These embeddings are employed as additional
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Fig. 7. Ablation of our LOP information encoding and feature fusion strategy
for target features. Compared with CLIP-Field, Baselinel learns region embed-
dings with additional supervision. Baseline2 encodes image into vision-language
embeddings instead of singular text embeddings. Topo-Field further refines the
object semantic label.

TABLE V
ABLATION OF TARGET FEATURE PROCESSING PIPELINE OF THE NEURAL FIELD
CONSTRUCTION
Methods Scenel Scene2 Scene3 Scened
CLIP-Field 0.242 0.165 0.130 0.142
Baselinel 0.865 0.887 0.872 0.879
Baseline2 0.872 0.891 0.875 0.886
Topo-Field(Ours) 0.886 0.900 0.884 0.894

The average region prediction accuracy of sampled points from different
scenes on the Matterport3D dataset is used as the metric.

supervision of object pixel features besides the origin object
embeddings to train F'. 3) Instead of using vision-language
encoder to encode the region text, Baseline2 encodes the origin
image as the vision-language embedding for context, which
takes the background pixels into account with the region labels.
4) Topo-Field, as current implementation, further considers the
context of the layout when supervising the object label seman-
tics, formatted as “object in region”. These four main versions
of our numerous iterations of trying are listed as examples to
show our work on the neural field encoding of LOP association.

VI. CONCLUSION AND LIMITATIONS

We propose a brain-inspired Topo-Field, which integrates
Layout-Object-Position (LOP) associations into a neural field
and constructs a topometric map from the learned field for
hierarchical robotic scene understanding. However, there are
some limitations: 1) Querying and path planning are currently
implemented using traditional methods (e.g. A*). Future work
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will explore more advanced path planning. 2) Current topolog-
ical map is built on the static environment assumption. Future
research will focus on updating and editing the topometric map
to accommodate environmental changes. 3) Current region in-
formation needed for neural field training relies on human-labor,
although the annotation process is easy. The region could be
automatically annotated by reasoning the room contents in the
future work.
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