
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2025 1

Brain-Inspired Visual Topometric Localization via
Roadnetwork-Constraint Hidden Markov Model

Jinyu Li1, Taiping Zeng2 and Bailu Si1

Abstract—Accurate localization in GPS-denied environments
remains a critical challenge for autonomous robot navigation.
Animals exhibit remarkable navigational abilities in complex,
dynamic environments by relying on mental cognitive maps.
Inspired by neural representations such as head direction cells
and grid cells, numerous robotic cognitive mapping systems can
efficiently cover large areas; however, they often lack the precise
metric information required for accurate localization. To address
this challenge, we propose a neurodynamically driven monocular
visual topometric localization approach based on road network
constraints. We introduce the Roadnetwork-Constraint Hidden
Markov Model (RC-HMM) to enhance the semi-metric map
by incorporating road network constraints, forming a coherent
topometric map that maintains vertex relationships and im-
proves localization accuracy. Experimental results in the CARLA
Town07 environment demonstrate the remarkable efficiency of
our topometric cognitive map. Compared to the semi-metric map,
our approach achieves a 95% reduction in Absolute Pose Error
(APE) and an 81% reduction in Relative Pose Error (RPE).
Compared to binocular ORB-SLAM3, our monocular approach
reduces CPU usage by 96.7% and map storage by 77.7%, with
an APE of 3.6 m and RPE of 1.4 m — closely matching
ORB-SLAM3’s 3.86 m APE and 0.96 m RPE. Furthermore,
by leveraging neurodynamics of grid cells and head direction
cells, our monocular topometric localization robustly delivers the
localization accuracy of 3.86 meters, comparable to binocular
ORB-SLAM3. This approach integrates road network metrics
into topological maps, enhancing brain-inspired navigation with
topometric maps in complex environments.

Index Terms—Biologically-Inspired Robots, Localization, Cog-
nitive Map, SLAM, Neurorobotics

I. INTRODUCTION

ROBOTS are evolving from research lab prototypes to
practical real-world applications, where accurate local-

ization is critical for reliable navigation. While GPS is com-
monly used due to its simplicity and low cost, it often proves
unreliable in large-scale, dynamic, unpredictable environments
such as urban areas, forests, or tunnels, where signal loss
or inaccuracies are frequent. Consequently, developing robust
GPS-free localization systems has become crucial for robotic
tasks, such as autonomous driving in urban environments,
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Fig. 1. Overview of the Topometric Mapping Process. Continuous image
sequences and self-motion are input to build a semi-metric cognitive map. The
RC-HMM method then integrates road network data to enhance the map’s
metric accuracy.

search and rescue in disaster zones, and navigation in GPS-
denied areas like warehouses, forests, and underwater [1].

However, animals show amazing navigation ability [2], [3],
[4], [5], efficiently navigating large-scale, dynamic environ-
ments for a very long time due to sophisticated cognitive
and neural mechanisms. Cognitive maps of the environment
were proposed to describe the internal representation of spatial
environments in animal brains that support their superior
navigation abilities [6]. Hippocampal place cells [7], head
direction cells [8], and entorhinal grid cells [9] provide a neural
basis for cognitive maps, facilitating spatial navigation and
environmental representation [10], [11], [12].

The neural mechanisms underlying mammalian navigation
have long inspired robot navigation systems. Brain-inspired
cognitive models of navigation can be broadly categorized
into two groups, each striking a different balance between
biological realism and practical performance. One group con-
sists of models designed to test and validate theories of
biological navigation mechanisms [13], [14], [15]. The other,
much smaller group of models employed neural systems to
construct semi-metric cognitive maps of the environment [16],
[17], [18], [19]. However, these semi-metric cognitive maps do
not incorporate enough metric information, which limits the
accuracy of robot localization and poses challenges for tasks
that demand accurate localization.

To enhance the accuracy of semi-metric mapping and
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localization in brain-inspired navigation systems, we pro-
pose the Roadnetwork-Constraint Hidden Markov Model (RC-
HMM) for constructing topometric maps (Fig. 1). This method
integrates semi-metric map and road network, effectively
transforming a semi-metric cognitive map into a topometric
cognitive map. The sequential visual inputs stimulate local
view cells, which activate the neurodynamics of grid cells and
head direction cells, thus facilitating precise localization. In the
CARLA Town07 environment, our monocular system demon-
strates comparable performance to binocular ORB-SLAM3 in
both mapping and localization accuracy. Our contributions are
summarized as follows:

• We propose a brain-inspired monocular visual localiza-
tion method for GPS-denied environments, using neural
dynamics of grid and head-direction cells to build a co-
herent topometric cognitive map that integrates topologi-
cal and metric information for precise robot localization.

• We introduce RC-HMM incorporates road network metric
into a semi-metric topological map. By jointly optimizing
global vertex projections and local distance constraints,
our method constructs a consistent and metrically accu-
rate topometric map that supports robust localization by
neurodynamics.

• We validate our topometric approach in Carla Town07,
reducing APE by 95% and RPE by 81% compared to
semi-metric maps. Against binocular ORB-SLAM3, our
monocular map achieves an APE of 3.6 m and RPE of 1.4
m (vs. 3.86 m and 0.96 m), while cutting CPU usage by
96.7%, map storage by 77.7%, and localization accuracy
remains comparable (3.86 m vs. 4.63 m) with a 99%
reduction of initial localization time.

II. RELATED WORKS

Simultaneous Localization and Mapping (SLAM) plays a
crucial role in enabling robots to map their environment
and determine their location in real-time [20]. SLAM algo-
rithms are generally classified into two categories: metric-
based SLAM and topological-based SLAM, with each offering
distinct advantages depending on the application’s demands for
precision and scalability.

1) Metric SLAM: Metric SLAM, encompassing both Li-
DAR and visual methods, is commonly used for accurate
localization. LiDAR-based approaches like Cartographer and
LOAM combine IMU data with laser scans for real-time
mapping [21], [22]. To reduce drift, LIO-SAM [23] improves
trajectory estimation with a nonlinear motion model, while
LEGO-LOAM [24] segments point clouds for better effi-
ciency on low-power systems. Visual SLAM methods like
ORB-SLAM series [25], [26], [27], as well as approaches
incorporating map constraints [28], rely on monocular, stereo,
and RGB-D cameras for feature-based localization and image
alignment. However, metric SLAM requires high computa-
tional and storage resources, limiting its scalability and real-
time performance in large-scale environments.

2) Topological SLAM: Topological SLAM offers a scalable
solution by representing environments through key landmarks
(vertices) and their spatial relationships (edges). A notable

example is the brain-inspired RatSLAM [16], [17], which
integrates odometry and landmarks via a competitive attractor
network, enabling the creation of semi-metric cognitive maps
in large, real-world environments. Yu et al. [19] extended
RatSLAM [16], [17] to 3D environments and validated it in
real-world scenarios. In contrast, our proposed NeuroBayesS-
LAM [18], [29] uses a Bayesian attractor network integrat-
ing visual and vestibular cues by parametric probabilistic
distributions, which reduces computational cost and resource
usage while maintaining biological plausibility. It encodes
orientation and position through head direction and grid cell
networks, offering robust performance in large-scale envi-
ronments. However, while these methods are scalable and
resilient, they typically provide only approximate position
information and lack the fine-grained precision of metric
localization. Furthermore, most existing brain-inspired SLAM
methods primarily focus on mapping quality while overlooking
map reusability.

Current topometric mapping integrates metric data from
diverse sources such as GPS [30], [31], visual SLAM [32], or
dense LiDAR [33]. Badino et al. [30], [31] combine GPS with
visual and 3D features for real-time localization. Topomap [32]
transforms sparse visual SLAM maps into topological graphs
by clustering free space and extracting occupancy data. Sim-
ilarly, the hybrid framework [33] builds dense indoor maps
via autonomous exploration, maintaining submaps to support
efficient planning. However, these methods are dependent on
high-precision GPS data or rely heavily on dense fine-grained
metric information from LiDAR or vision sensors, resulting in
increased computational and storage demands.

In this paper, we present the RC-HMM for constructing
topometric cognitive maps in GPS-denied situation, leveraging
ProtoBuf for efficient map reuse. This approach facilitates
precise localization while minimizing computational require-
ments.

III. TOPOMETRIC COGNITIVE MAPPING AND
VISUAL LOCALIZATION

We present a brain-inspired visual localization method based
on a topometric cognitive map, constructed using the proposed
RC-HMM. RC-HMM integrates a semi-metric topological
map – generated by our previous NeuroBayesSLAM [18] –
with metric information extracted from road networks via
Hidden Markov Model (HMM) map matching [34]. By lever-
aging the neurodynamics of grid cells and head direction cells,
precise localization is achieved within the topometric cognitive
map.

A. Semi-metric Cognitive Mapping

1) Bayesian Attractor Model: The NeuroBayesSLAM
framework [18] integrates visual and vestibular inputs using a
Bayesian attractor network model, facilitating robust pose esti-
mation. This framework employs two subnetworks to represent
the robot’s pose: the head direction network encodes angular
information, while the grid cell network encodes positional
information.
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Fig. 2. Framework for Topometric Cognitive Mapping. Visual and vestibular cues are integrated to construct a semi-metric cognitive map. Local view
cells encode visual features, while integration and calibration cells support the formation of head direction and grid cell models for orientation and spatial
representation. RC-HMM incorporates road networks, refining the map with global and local constraints. The neurodynamics of grid and head direction cells
enable visual localization within the topometric map.

The head direction cell network is modeled through a
Bayesian inference process involving a population of integrator
cells for vestibular cues integration, as well as a population of
calibration cells for visual cue calibration. The two popula-
tions are interconnected through mutual inhibition and global
inhibition. The belief of each population is defined as:

p(θ) =
1

σ
√
2π
e−|θ−µ|2/2σ2

(1)

Where θ ∈ [0, 2π) is the label of a cell. | · | takes the
difference of two angles on a circle. The mean µ is the
maximum likelihood estimation of the head direction given
by the population, and the variance σ2 is the uncertainty of
the belief. The reliability of the head direction cell derived
from the combined contributions of integrator and calibration
cells, which are uniform without prior knowledge [18].

Similar to the head direction cell network, the grid cells in
the model form 2D torus attractors with single-peaked activity
profiles.

p(x, y) =
1

2πσxσy
e−|x−µx|2/2σ2

x+|y−µy|2/2σ2
y (2)

Where x, y ∈ [0, 2π) are the coordinates of the cells in the
respective 2D neural manifold. (µx, µy) is the spatial phase
encoded by the cells. 1/σ2

x and 1/σ2
y are the reliabilities of

spatial phase estimation in each dimension.
2) Attractor dynamics: Taking the head direction cell net-

work as an example, conflicts between integrator and calibra-
tion cells are resolved through global and mutual inhibition,
enabling attractor dynamics.

Global inhibition maintains a constant network energy and
is defined as:

1
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where (σt−1
inte )2 and (σt−1

cali )
2 represent the uncertainty in the

beliefs of integrator and calibration cells before updating. W
is the total Fisher information that acts as a normalization
factor.

W =
1

(σt−1
inte )2

+
1

(σt−1
cali )

2
(5)

E is a predefined constant representing the total Fisher infor-
mation for head direction. Mutual inhibition ensures a single
stable activity peak over time, defined as:
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Here, ∆inte and ∆cali denote the inhibition strength on integra-
tor and calibration cells, respectively.

The competition between these two populations allows the
network to temporarily accommodate different beliefs while
gradually integrating information to form a coherent head
direction representation.

3) Construction And Serialization: By modeling head di-
rection and grid cell networks and utilizing a Bayesian at-
tractor neural dynamics mechanism, we build a semi-metric
cognitive map [18] to store spatial positions and transfor-
mations derived from visual information. To ensure efficient
storage and facilitate accessibility, we employ Protocol Buffers
(protobuf) [35], a structured data serialization framework.
This approach enables us to store data as protobuf stream
files (pbstream), thereby maintaining the compactness and
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accessibility of the semi-metric cognitive map. The structure
of this map is organized into head direction and grid cells,
local view cells, and the experiences map.

B. RoadNetwork-Constraint Hidden Markov Model (RC-
HMM)

Metric SLAM achieves high-precision mapping but is com-
putationally intensive, while topological SLAM is more effi-
cient but less accurate. To balance this trade-off, we propose
the RC-HMM that incorporates road network information
to refine semi-metric maps into topometric representations,
enhancing accuracy while maintaining efficiency.

1) Deserialization of the Topological Structure: To extract
the topological structure of the semi-metric cognitive map, we
employ protobuf [35] deserialization to convert the experience
map into a topological graph comprising vertex sequences and
connectivity relationships, known as the semi-metric topolog-
ical map.

2) Formulation of the Global Cost Function: To incorpo-
rate metric information, we apply the HMM map matching
algorithm [34] to project the topological vertices onto the
road network. The resulting matched positions serve as global
constraints for constructing the global cost function in RC-
HMM.

Emission Probability Modeling The vertex of the semi-
metric topological map contains positional and orientation
information and can be expressed as (pt, ψt). Here, pt rep-
resents the position of vertex as a two-dimensional position
vector, while ψt denotes the orientation.

Consider pt as a measurement, and define a candidate road
segment area with a radius r around pt. Road segments within
this area are considered potential matches, denoted as ri.
The emission probability p(pt|ri) represents the likelihood
of observing pt if the agent is located on road segment
ri. The emission probability is calculated using (8), where
zt,i represents the closest point on road segment ri to the
measurement pt, and ||pt − zt,i|| is the shortest distance
between them.

p(pt|ri) =
1√
2πσz

e−0.5(
||pt−zt,i||

σz
)2 (8)

Where σz = 1.4826mediant(||pt − zt,i∗ ||) can be estimated
by [34], i∗ indicate the correct matched road.

Transition Probability Estimation Each measurement pt

has a set of potential road segment matches, and the next
measurement pt+1 has its own candidates. Transition proba-
bilities estimate the likelihood of the agent moving between
these road segments. The driving distance between two points
on candidate road segments is called the route distance,
||zt,i−zt+1,j ||route, while the distance between measurements
pt and pt+1 is the measurement distance. According to [34],
the absolute difference between these distances for correct
matches follows an exponential probability distribution, as
outlined in Equation (9):

p(dt) =
1

β
e−dt/β (9)

here, dt = |||pt − pt+1|| − ||zt,i∗ − zt+1,j∗ ||route|, i∗ and j∗

indicate the ground truth road segments of route. We estimate
the value of β with a robust estimator suggested by [36] as
β = 1/ln(2)mediant(dt).

Optimal Path Computation Then we employ the Viterbi
algorithm to determine the most likely path and the closest
point to the measurement on that path.

The global cost function G, as defined in Equation (10), is
designed to minimize the distance between the vertices on the
semi-metric topological map and their corresponding matched
points in the road network.

G =
∑
t∈N

||(pt − zt)||2 (10)

where N indicates the number of vertices on semi-metric
topological map, zt denotes the projection of pt onto the
correctly matched road.

3) Formulation of the Local Cost Function: The connec-
tions between topological map vertices serve as local con-
straints in constructing the local cost function. The local cost
function, denoted as F , described in Equation (11), consists of
two main components: positional and orientation differences.

F =
∑

a,b∈N

|[ R
T
a (pb − pa)− p̂ab

warp(ψb − ψa − ψ̂ab)
]|Σ (11)

The function | · |Σ is the Mahalanobis distance with respect
to covariance Σ, a measure that accounts for the correlation
between distances of connected vertices. And the warp(·)
function normalizes angle ranges, constraining direction values
within [−π, π]. Set p̂ab and ψ̂ab as a measure of the relative
transformation between connected vertices a and b, capturing
changes in both relative position and direction. Ra is used for
coordinate transformation.

4) Optimization of the Cost Function: Combining global
and local constraint, we define the total cost function as:

minJ(P ,Φ) = wl · F + wg ·G (12)

where P and Φ represent the positions and orientations of
vertices on topometric map, while wl and wg denote the
weights assigned to local constraints and global constraints,
respectively.

We formulated the least squares problem based on (12) and
optimized it using the Ceres solver. Common approaches for
solving such problems include gradient descent, the Gauss-
Newton method, and the Levenberg-Marquardt algorithm. In
this paper, we adopt the Gauss-Newton method with Cholesky
decomposition to construct the topometric map, which in-
tegrates both topological structure and metric information.
Following the same serialization process as the semi-metric
cognitive map, we use protobuf [35] to store vertices and
the relationships between vertices in the topometric map as
a metric experience map, which, along with local view cells
and grid cells, ultimately forms the topometric cognitive map.

C. Visual Localization with Neurodynamics

Visual localization is performed within the topometric cog-
nitive map, utilizing visual images as input and leveraging the
neural dynamics of head direction and grid cells.
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A new visual input is compared with the visual templates
stored in the local view cells. If the input corresponds to a
previously encountered scene, the associated local view cell is
reactivated and injects corrective energy into the head direction
and grid cell networks. Specifically, for the head direction
network, the activity of calibration cells can be expressed as:

1

(σt
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2
=

1
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cali )

2
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1

(σt
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2
(13)

µt
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2
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2
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(σt
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2

(σt
inject)

2
µt

inject (14)

where 1
(σt

inject)
2 is the reliability of the visual cue, µt

inject is the
location where the current is injected to the one dimensional
neural manifold of head direction cells.

The current head direction is then estimated by integrating
information from both the integrator and calibration cells:
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where 1
(σt

f )
2 is the reliability and µt

f the center of the belief.
The integrator and calibration cells in grid cell network are

updated in the same way as those in the head direction cell
network to encode position of robot.

IV. EXPERIMENTAL SETUP

A. Simulation Platform and Datasets

CARLA, an open-source simulator widely used in au-
tonomous driving research, provided the testing environment
for this study. We conducted experiments in the Carla Town07

scenario, a rural setting with diverse road structures. We
recorded the dataset in ROS bag format, capturing monocular
and stereo image sequences over 1,315 s, totaling 14,717
frames. Monocular data was used to evaluate semi-metric
cognitive map and our topometric cognitive map, while stereo
data supported ORB-SLAM3 assessment.

To ensure a fair comparison, we selected binocular ORB-
SLAM3 as the baseline over monocular ORB-SLAM3 with
IMU. The latter relies on high-frame-rate IMUs and requires
an initialization step involving acceleration and sensor tilting
relative to gravity [27]. However, mobile robots often expe-
rience limited tilt variations, leading to frequent initialization
failures. In contrast, binocular ORB-SLAM3 directly estimates
scale from visual disparity, offering greater stability and pre-
cision.

All algorithms were executed on a unified platform running
Ubuntu 20.04, powered by an Intel® Xeon® W-2195 CPU at
2.30 GHz. This ensured consistent computational performance
across all experiments.

B. Mapping Evaluation

Performance Evaluation We conducted mapping exper-
iments using monocular semi-metric cognitive map, our
monocular topometric cognitive map and binocular ORB-
SLAM3 on the same rosbag. To evaluate mapping perfor-
mance, we measured CPU utilization, keyframe count, map
storage size, vertex and edge numbers during execution.

Accuracy Evaluation For accuracy assessment, we utilized
odometry-derived ground truth and employed Absolute Pose
Error (APE) and Relative Pose Error (RPE) as evaluation
metrics. APE quantifies the absolute deviation of each mapped
vertex from its corresponding ground truth position, while
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TABLE I
COMPARISON OF SEMI-METRIC MAP, BINOCULAR ORB-SLAM3 KEYFRAMES AND TOPOMETRIC MAP

CPU Usage (%) Map Size (M) CameraFrame KeyFrame Vertex Nums Edge Nums APE (m) RPE (m)

Semi-metric map
(Mono)

1.3 56.1 - - 1417 1567 121.2 9.4

ORB-SLAM3
(Binocular)

40.57 259 14717 715 - - 3.86 0.96

Topometric map
(Mono, ours)

1.3 56.1 - - 1417 1567 3.6 1.4

RPE evaluates spatial consistency by analyzing the relative
positional errors between consecutive vertices.

C. Localization Evaluation

Performance Evaluation Similarly, we conducted multiple
localization experiments with our monocular topometric map
and binocular ORB-SLAM3, recording initial localization time
and trajectory length as performance indicators.

Accuracy Evaluation For localization accuracy evaluation,
we again used odometry-derived ground truth. The localization
error was defined as the deviation between the estimated
position using grid cell representations and head-direction cell
neurodynamics and the ground truth trajectory.

V. RESULTS
A. Topometric Cognitive Mapping

We conducted experiments in Town07, as shown in Fig. 3.
Initially, we used visual and vestibular cues to construct a
semi-metric map using NeuroBayesSLAM, as depicted in
Fig. 3A. We then used RC-HMM to integrate road networks
into the semi-metric map, forming the topometric map shown
in Fig. 3B, with green vertices as map points and the black
line as ground truth.

To evaluate mapping performance, we compared our
monocular topometric cognitive map with a semi-metric map
and binocular ORB-SLAM3 using the same rosbag. Key
metrics, including CPU usage, map type, and storage size, are
summarized in Table I. Due to an efficient data structure, our
map uses 1,416 vertices and 1,567 edges, reducing storage by
77% and CPU usage by 96.7% compared to ORB-SLAM3’s
14,717 trajectory points and 694 keyframes, enhancing com-
putational and storage efficiency for mapping.

To assess performance, we evaluated the APE and RPE
of three approaches: monocular semi-metric map, binocular
ORB-SLAM3 keyframes, and our monocular topometric map,
with results shown in Fig. 3D–F. The semi-metric map showed
the largest errors (mean APE: 121 m; RPE: 9.6 m), highlight-
ing its limitations. ORB-SLAM3 achieved greater precision
(mean APE: 3.86 m; RPE: 0.96 m). Fig. 3C illustrates the
APE distribution on our topometric map, which delivered the
best overall performance, striking an optimal balance between
precision (mean APE: 3.6 m; RPE: 1.4 m) and computational
efficiency, such as reduced processing time compared to ORB-
SLAM3.

Statistical analysis of APE and RPE across monocular
semi-metric map, binocular ORB-SLAM3 keyframes, and

monocular topometric map, as presented in Fig. 3G–I. These
results underscore the monocular topometric map’s advantage:
it combines the high computational efficiency of semi-metric
maps with the precision of metric maps, offering a versatile so-
lution for spatial mapping. While Fig. 3C shows higher APEs
resulting from map alignment and the sparsity of topometric
map. In future work, we aim to develop an efficient navigation
system that leverages topometric maps for global planning and
orientation, better supporting large-scale navigation tasks.

B. Topometric Localization

To explain the neurodynamic process of visual localization,
we refer to Fig. 4A through Fig. 4D. Fig. 4A displays the
visual input over time, with shorter intervals in the initial
phase and longer intervals after successful localization. Fig. 4B
and C represent the dynamic activity of grid and head di-
rection cells, corresponding to the visual input in Fig. 4A.
The localization error throughout the process is visualized
in Fig. 4D, where error magnitude is represented by color-
coded vertices. The initial point at T = 0, shown in Fig. 4D,
corresponds to the starting positions depicted in Fig. 4A–C
and matches the initial map position, marked as a dark gray
dot in Fig. 4E. As visual input is processed, grid and head
direction cells stabilize through neurodynamic interactions,
leading to a significant reduction in localization error and
enabling successful localization. This trajectory is highlighted
by a pentagram in Fig. 4E, where the color of the vertices
represents the magnitude of the localization error, consistent
with the color-coding scheme in Fig. 4D.

To evaluate the localization performance of our algorithm,
we selected 10 image sequences of varying trajectory lengths
and conducted comparative tests using both our monocular
topometric map and binocular ORB-SLAM3. We record the
trajectory lengths, initial localization time, and localization er-
ror for both algorithms, as summarized in Table II. Compared
to ORB-SLAM3, our monocular topometric map significantly
improves localization speed while maintaining comparable
localization accuracy.

Then further testing was conducted on a 1,816 meter tra-
jectory, highlighted by a quadrilateral star in Fig. 4E, where
vertices colors reflect the magnitude of localization error of
our monocular topometric map. The localization accuracy
results for our monocular topometric map and binocular ORB-
SLAM3 are presented in Fig. 4F and G, respectively. Both
algorithms exhibit initial localization errors of approximately
120 m. Our monocular topometric map (Fig. 4F) achieves
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Fig. 4. Visual Topometric Localization Experiments. (A–D) Neurodynamics of localization with a logarithmic time scale. (A) Visual input; neurodynamics
of (B) grid cells and (C) head direction cells firing patterns; (D) localization errors. The start and end points of the test segment in (D) are marked by pentagram,
while dark gray points indicate the initial position. (F, G) The localization accuracy of both our monocular topometric map and binocular ORB-SLAM3,
corresponding to the start and end points of the quadrilateral stars in the test trajectory shown in (D).

TABLE II
LOCALIZATION PERFORMANCE RESULTS

Method Metric Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10

Trajectory Length (m) 372.7 804.3 170 732.6 812.7 1485.3 559 294.2 1423.9 830.9

ORB-SLAM3
(Binocular)

Initial Localization Time (ms) 794 1058 1077 978 1104 1171 1176 894 993 1064

Localization Error(m) 2.82 4.77 3.69 4.03 4.85 5.22 6.29 4.86 5.29 4.5

Topometric map
(Mono, ours)

Initial Localization Time (ms) 1.54 0.13 0.65 0.15 2.02 0.28 0.12 0.25 0.21 0.18

Localization Error(m) 4.03 3.74 5.19 3.59 3.56 6.33 3.65 4.8 4.63 3.89

fast initial localization (0.56 ms) and stabilizes at an average
error of 3.86 m. In comparison, binocular ORB-SLAM3
(Fig. 4G) localizes in 780 ms with an average error of
4.63 m. Throughout testing, our monocular topometric map
maintains a lower average error while substantially reducing
initial localization time compared to binocular ORB-SLAM3.
However, the accuracy of RC-HMM is ultimately constrained
by the sparsity of the topometric map, whereas ORB-SLAM3
benefits from the availability of abundant and high-quality

feature points.

VI. CONCLUSIONS

In this paper, we introduced a brain-inspired visual topomet-
ric localization approach aimed at enhancing the practical ap-
plications of robotic navigation in complex environments. The
proposed RC-HMM integrates semi-metric cognitive maps
from NeuroBayesSLAM [18] with metric constraints using
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the HMM map matching [34], thus improving metric accu-
racy. Meanwhile, the incorporation of neurodynamic models
inspired by mammalian brains ensures accurate localization.

Our method was evaluated in the CARLA Town07 virtual
environment, demonstrating substantial improvements in com-
putational efficiency. Our monocular topometric cognitive map
significantly reduced CPU usage and map storage compared
to binocular ORB-SLAM3 while maintaining comparable
mapping accuracy. Furthermore, leveraging the neurodynamic
mechanisms of grid cells and head direction cells, our monoc-
ular topometric cognitive map drastically reduced initial lo-
calization time without compromising precision. These results
highlight the potential of neuro-inspired topometric mapping
for achieving both efficiency and accuracy in robot navigation.
Future work will focus on extending evaluations to large-scale
real-world environments and exploring long-term operational
scenarios to further validate the approach.

ACKNOWLEDGMENT

This work was supported by the National Science and
Technology Innovation 2030 Major Program of China (Grant
No. 2022ZD0205005), the National Key R&D Program of
China (Grant No. 2019YFA0709502).

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] M. J. Milford, J. Wiles, and G. F. Wyeth, “Solving navigational uncer-
tainty using grid cells on robots,” PLoS computational biology, vol. 6,
no. 11, p. e1000995, 2010.

[3] M. Geva-Sagiv, L. Las, Y. Yovel, and N. Ulanovsky, “Spatial cognition
in bats and rats: from sensory acquisition to multiscale maps and
navigation,” Nature Reviews Neuroscience, vol. 16, no. 2, pp. 94–108,
2015.

[4] M. Parrini, G. Tricot, P. Caroni, and M. Spolidoro, “Circuit mechanisms
of navigation strategy learning in mice,” Current Biology, vol. 34, no. 1,
pp. 79–91, 2024.

[5] E. A. Maguire, N. Burgess, J. G. Donnett, R. S. Frackowiak, C. D. Frith,
and J. O’Keefe, “Knowing where and getting there: a human navigation
network,” Science, vol. 280, no. 5365, pp. 921–924, 1998.

[6] E. C. Tolman, “Cognitive maps in rats and men.” Psychological review,
vol. 55, no. 4, p. 189, 1948.

[7] K. J. Jeffery, M. I. Anderson, R. Hayman, and S. Chakraborty, “A
proposed architecture for the neural representation of spatial context,”
Neuroscience & Biobehavioral Reviews, vol. 28, no. 2, pp. 201–218,
2004.

[8] J. Rank, “Head-direction cells in the deep layers of dorsal presubiculum
of freely moving rats,” in Soc. Neuroscience Abstr., vol. 10, 1984, p.
599.

[9] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser,
“Microstructure of a spatial map in the entorhinal cortex,” Nature, vol.
436, no. 7052, pp. 801–806, 2005.

[10] N. Burgess, “The 2014 nobel prize in physiology or medicine: a spatial
model for cognitive neuroscience,” Neuron, vol. 84, no. 6, pp. 1120–
1125, 2014.

[11] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and
the brain’s spatial representation system,” Annu. Rev. Neurosci., vol. 31,
no. 1, pp. 69–89, 2008.

[12] A. Mathis, A. V. Herz, and M. Stemmler, “Optimal population codes for
space: grid cells outperform place cells,” Neural computation, vol. 24,
no. 9, pp. 2280–2317, 2012.

[13] A. Arleo, “Spatial learning and navigation in neuro-mimetic systems,”
Modeling the Rat Hippocampus, 2000.

[14] J. L. Krichmar, D. A. Nitz, J. A. Gally, and G. M. Edelman, “Charac-
terizing functional hippocampal pathways in a brain-based device as it
solves a spatial memory task,” Proceedings of the National Academy of
Sciences, vol. 102, no. 6, pp. 2111–2116, 2005.

[15] N. Burgess, J. G. Donnett, K. J. Jeffery, and J. O-keefe, “Robotic and
neuronal simulation of the hippocampus and rat navigation,” Philosoph-
ical Transactions of the Royal Society of London. Series B: Biological
Sciences, vol. 352, no. 1360, pp. 1535–1543, 1997.

[16] M. J. Milford, G. F. Wyeth, and D. Prasser, “Ratslam: a hippocampal
model for simultaneous localization and mapping,” in IEEE Interna-
tional Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, vol. 1. IEEE, 2004, pp. 403–408.

[17] D. Ball, S. Heath, J. Wiles, G. Wyeth, P. Corke, and M. Milford,
“Openratslam: an open source brain-based slam system,” Autonomous
Robots, vol. 34, pp. 149–176, 2013.

[18] T. Zeng, F. Tang, D. Ji, and B. Si, “Neurobayesslam: Neurobiologically
inspired bayesian integration of multisensory information for robot
navigation,” Neural Networks, vol. 126, pp. 21–35, 2020.

[19] F. Yu, J. Shang, Y. Hu, and M. Milford, “Neuroslam: A brain-inspired
slam system for 3d environments,” Biological cybernetics, vol. 113,
no. 5, pp. 515–545, 2019.
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