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Spatiotemporal Dual-Stream Network
for Visual Odometry

Chang Xu ", Taiping Zeng

Abstract—Visual Odometry (VO) empowers robots with the
ability to perform self-localization within unknown environments
using visual cues, yet it is faced with challenges in dynamic en-
vironments. In this study, we propose a novel monocular visual
odometry network called Spatiotemporal Dual-stream Network
(STDN-VO) with two parallel streams, i.e. spatial stream and
temporal stream, to model spatiotemporal correlation in the im-
age sequences. Technically, the spatial stream is responsible for
extracting global context information from an image, while the
temporal stream is designed to effectively extract robust temporal
context information from consecutive frames. The outputs of the
spatial stream and the temporal stream are merged and then fed to
a pose head for predicting the relative pose. Experimental results
on the KITTI dataset demonstrate competitive pose estimation per-
formance exceeding published deep learning-based methods. These
results underscore the effectiveness of the proposed framework for
visual odometry.

Index Terms—Monocular visual odometry, dual-stream netw-
ork, deep learning.

1. INTRODUCTION

ISUAL Simultaneous Localization and Mapping (vS-
V LAM), a technology that employs vision sensors for pose
estimation and simultaneous environment mapping, is widely
utilized in many fields, such as autonomous driving [1], aug-
mented reality [2], and robotics [3]. As a critical component of
vSLAM, Visual Odometry (VO) ensures reliable pose estimation
via analyzing sequences of continuous images. In particular,
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Monocular Visual Odometry (MVO) attracts considerable at-
tention from researchers, attributable to the convenience, cost-
efficiency, and adaptability of monocular cameras in diverse
environments.

Traditional VO methods, which are provided as geometric
models and are typically viewed as an optimization problem,
can be divided into two categories: indirect and direct. Indirect
VO methods rely on the extraction and matching of feature
keypoints, transforming image pairs into corresponding sets
of keypoints and deriving the robot’s pose by minimizing re-
projection error [4]. Conversely, direct VO methods posit that
extracting feature keypoints may result in the loss of significant
information. Therefore, direct VO methods aim to minimize
photometric error by leveraging photometric consistency of raw
pixel data [5]. However, the robustness of the aforementioned
methods can be compromised in complex environments char-
acterized by dynamic lighting conditions and scene variations,
where feature extraction and matching are prone to inaccurate
outcomes.

In recent years, deep learning has demonstrated superior
competitiveness in a variety of fields [6], [7], [8], attributed to its
powerful capacity for feature representation and robustness. VO
has also been addressed in the deep learning framework [9], [10],
[11], [12], [13], [14], [15], [16], harnessing the proficiency of
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNN5s) in learning representations and modeling dy-
namics. For example, DeepVO [9] provides an end-to-end recur-
rent convolutional neural network model for MVO. In addition
to the aforementioned works, transformer-based methods [17],
[18] are making strides as well, with TSformer-VO [18] and
SWformer-VO [17] being noteworthy illustrations. TSformer-
VO, based on the TimeSformer [19], incorporates sequential
spatio-temporal attention mechanisms. This design allows the
both temporal and spatial self-attention share the same archi-
tecture, capturing the spatio-temporal features while reducing
the number of model parameters. Additionally, SWformer-VO
utilizes the Swin Transformer [20] as its backbone network and
innovatively incorporates a novel ‘Mixture Embed’ module.
This module is designed to process the spatial and temporal
information by fusing consecutive image pairs into tokens,
which are then fed into the backbone network. Consequently,
SWformer-VO is capable of estimating the six degrees of free-
dom (6-DoF) camera pose under monocular camera conditions.
These methods have significantly pushed forward the field of
MVO. However, these methods do not consider the segregation
of temporal and spatial features, jeopardizing the efficiency in
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visual information processing. In contrast, in the human visual
cortex, there are two distinct pathways for visual processing:
the ventral visual stream (involved in object recognition) [21]
and the dorsal visual stream (responsible for encoding motion
information) [22]. This theory has been widely recognized as
the two-stream hypothesis [23].

Inspired by the two-stream hypothesis, in this work, we in-
troduce a novel model for MVO, namely Spatiotemporal Dual-
stream Network (STDN-VO). We design two parallel streams,
i.e., spatial stream and temporal stream, to model the segregation
of spatiotemporal features of image sequences. Specifically,
the spatial stream is responsible for extracting spatial features
from an image. It is implemented by using Vision Transformer
(ViT) [24] to capture global context information. The process be-
gins by presenting the input as a series of uniformly-sized, non-
overlapping patches. To consider the ‘order’ of these patches,
each is combined with a learnable positional embedding. Fol-
lowing this, the multi-head attention mechanism within the ViT
enables the modeling of the relationships between different
patches, culminating in a comprehensive and detailed under-
standing of the image. Additionally, the temporal stream is de-
signed to effectively extract robust temporal context information
of targets from previous frames. Inspired by RAFT [25], we
harness ConvGRU to adeptly capture sequential dependencies
between consecutive frames. Upon feeding in a pair of adjacent
frames, we calculate the correlation between them, generating
a correlation matrix that, when combined with the frame data,
forms a new input for the ConvGRU, which adeptly captures the
dynamic characteristics within the image sequence. Finally, the
outputs of spatial stream and temporal stream are concatenated
and then fed to a pose decoder for predicting the relative pose.
Extensive experiments on KITTI benchmarks show that the
proposed STDN-VO achieves better performance than recent
deep learning VO methods.

To summarize, our contributions come in three folds:

® We propose a dual-stream architecture for MVO, i.e.

STDN-VO, mimicking the parallel pathway of human
visual system.

® The proposed architecture outperforms alternative archi-

tectures with only single stream or ViT replaced by a CNN.

e STDN-VO demonstrates improved pose estimation on the

KITTT dataset, competitive with recent deep learning VO
methods like DeepVO, TSformer-VO, and SWformer-VO.

Additionally, we intend to make the source code of STDN-VO
publicly available to facilitate further research and development
within this domain.

II. RELATED WORK

Deep learning for pose estimation: Certainly, the realm of
learning-based VO has witnessed remarkable advancements.
PoseNet [26], in particular, stands out as a pioneering end-
to-end VO model that harnesses CNNs, marking a significant
milestone in the evolution of this field. However, when dealing
with sequential data, relying exclusively on CNNs may not fully
capture the complexities of temporal dynamics. Consequently,
RNNSs, which are more adept at handling sequential data, have
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been introduced into VO. DeepVO [9], an end-to-end model,
harnesses the power of CNNs to extract rich image features,
which are then seamlessly channeled into a Long Short-Term
Memory (LSTM) module. In this way, the architecture adeptly
captures temporal correlations, enabling the model to achieve
remarkable accuracy and robust generalization capabilities. As
a benchmark of the supervised learning VO method, DeepVO
served as a foundational framework for a host of research
efforts [10], [11], [12], [13], [14], [15], [16].

In addition to the methods above, advancements in model
architecture are being witnessed. For instance, the Trans-
former [27], renowned for its breakthroughs in natural language
processing (NLP), has been effectively applied to the field of
VO [17], [18].

Dual-stream networks: The dual-stream networks draw inspi-
ration from the two-stream hypothesis observed in the human
visual cortex [23]. This architecture mimics the two pathways
of the human visual system, employing two distinct network
branches to process the spatial and temporal information. Con-
sequently, by fusing these distinct streams of information, the
dual-stream architecture leverages their combined insights to
deliver superior performance.

The pioneering research in the realm of video understanding
utilizing a dual-stream architecture is attributed to the efforts of
Karen et al. [28] Their approach includes a spatial stream module
that takes single-frame image as input and a temporal stream
module for handling sequences of frames. After passing through
a softmax layer, these two parts are simply fused and then
utilized for action recognition. Christoph et al. [29] argued that
the feature fusion module in existing dual-stream architectures
was overly simplistic. Consequently, they conducted a series of
experiments to devise more effective fusion module. Peng et
al. [30] introduced a novel dual-stream architecture designed
for video understanding. This architecture is distinguished by
a spatial-temporal interaction learning module that employs an
alternating collaborative attention mechanism to bridge the two
streams, thereby enhancing the learning of spatial and temporal
feature correlations. The dual-stream architecture is particularly
effective for sequential recognition tasks, as it adeptly cap-
tures both temporal and spatial features, thereby significantly
enhancing the model’s performance.

In this study, we leverage a dual-stream architecture for
MYVO to address the spatial temporal dynamics of visual inputs.
Specifically, the temporal stream module employs a ConvGRU,
while the spatial stream utilizes ViT. The integration of features
extracted from these two distinct streams, facilitated by a spe-
cialized pose head, allows us to precisely estimate the 6-DoF
relative pose.

III. METHOD

Given a pair of consecutive monocular images, STDN-VO
aims for 6-DoF pose estimation. As depicted in Fig. 1, STDN-
VO model is composed of three main modules: a feature extrac-
tion module, adecoder module, and a pose head module (Sec. A).
The feature extraction module serves to extract effective features
from the monocular images. The decoder module is designed
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Fig. 1. (a) The overall pipeline of the proposed STDN-VO: the model receives
two consecutive monocular images {I;, I; 11 }, which are processed by the pre-
trained Swin Transformer. The resultant feature representations are then fed
into the decoder block. Finally, the pose head provides an estimation of the
6-DoF relative pose. (b) Details of the decoder block illustrate a dual-stream
architecture: the upper stream (T) dedicates to temporal processing and the
lower stream (S) focuses on spatial analysis.

to model spatiotemporal correlation in the image sequences.
The pose head module, meanwhile, focuses on pose estimation.
Furthermore, the loss function, introduced in Sec. B, plays a
pivotal role in the model’s training phase.

A. Model Design

Feature extraction module: We utilize the pre-trained Swin
Transformer for feature extraction. As depicted in Fig. 1(a), the
input comprises a sequence of two consecutive images, denoted
as {Iy, I; 1}, with [ € RF>*WxC Here, C symbolizes the num-
ber of channels in each input image, which defaults to 3. The
dimensions of the image, represented by H x W, correspond
to its height and width, defaulting to 256 x 256. The inputs are
meticulously processed by the pre-trained Swin Transformer,
consequently yielding feature representations, { F}, Fy11 }, with
the resolution reduced to a quarter of its original size. These
features are subsequently channeled into both the spatial stream
module and the temporal stream module, where they are further
analyzed and synthesized to capture the complex spatial and
temporal dynamics of the visual data.

Spatial stream module: In this letter, we introduce a spatial
stream module based on ViT. We utilize patch embeddings by
partitioning each of the input features {F}, F11} individually
into N patches, which are of size p x p pixels. These patches
are then mapped to D dimensions, represented by X;, via a
trainable convolutional layer with a kernel size of p x p and
a stride p matching the patch size. Subsequently, we add a
learnable embedding, denoted as X, ;,ss, to the sequence of
embedded patches. X.;4ss can be considered as the global
features of the input tensor. Furthermore, we add the trainable
position embeddings, s, to the patch embeddings, capturing
the positional information of each patch within the original
image.

ZOZ [Xclass§X1§X2;---;XN]+Ep057 (1)
Z, =MSA(LN(Z; 1))+ Zev, (=1...L (2
Z, =MLP(LN(Z))) + Z),  (=1...L 3)

y =LN(Z}), “
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where L denotes the number of the transformer encoder blocks,
Zy acts as the input to the initial Transformer encoder block, un-
dergoing layernorm (LN) and multiheaded self-attention (MSA)
processes. Ultimately, Z 2, representing the state of X ;s at the
final Transformer encoder block, is selected to serve as the global
representation y of the input.

Temporal stream module: The temporal stream module bor-
rows the key components of RAFT to adeptly capture the dynam-
ics of temporal sequences [25]. This module takes as input a pair
of feature representations { F}, F; 11 }, which are extracted by the
feature extraction module, to construct the correlation volume.
The correlation volume, denoted as C, is formulated by taking
the dot productbetween F; € RT>*W>Pand ;| € RE>XWxD:

Cijri = Z(Ft)ijh(FtJrl)klh- C € RIXWXHXW (5
h

Subsequently, we directly derive the context feature from the
feature representation Fy. This context feature, endowed with a
wealth of image information, significantly enhances the model’s
capacity for scene understanding. The context feature, along
with the correlation volume, is then fed into ConvGRU. Similar
to RAFT, we utilize a1 x 5 convolutionanda b x 1 convolution
to replace the 3 x 3 convolution in the ConvGRU unit, which
increases the receptive field without significantly increasing the
size of the model. Following ConvGRU, as shown in Fig. 1(b),
three convolutional layers are sequentially applied, each with
kernel size of 3. These layers are coupled with a ReL.U activation
function to introduce non-linearity. Subsequently, The output
from these convolutional layers is channeled through a fully
connected (FC) layer, yielding a 768-dimensional output vector.
Pose head module: The pose head module, as illustrated in
Fig. 1(a), is composed of two FC layers, where each is followed
by a LeakyReLU activation function. This activation allows the
network to learn even when dealing with negative input values,
thus mitigating the common issue of ‘dead neurons’ that can
occur with the ReLU activation function. The final output is a

6-dimensional vector, which serves as the estimated pose.

B. Supervision

We supervised our network on the mean squared error (MSE)
between the predicted and ground truth pose. The loss is defined
as:

(tin —Fin)” 4+ (rin —Fin)?. (6)

3
=1

1 &

Here, B, denotes the batch size. ¢;,, and r;, represent the
ground truth translation and rotation respectively. t}-,n and 7; ,,
are the corresponding predictions by the model. £ = 100 is
a positive parameter to weight position and orientation as in
DeepVO [9].

7

IV. EXPERIMENTS

We first evaluate the effectiveness of the proposed STDN-VO
on the KITTI visual odometry benchmark [31] against recent
deep learning VO methods. Furthermore, we conduct experi-
ments on the TUM [32] and EuRoC [33] datasets to demonstrate
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the robustness and generalization ability of STDN-VO. Finally,
we design ablation studies to validate the design of our model.

A. Dataset

We utilize the KITTI dataset, recognized as the primary
benchmark for evaluating VO models, to assess the effectiveness
of STDN-VO. Spanning 39.2 kilometers of visual odometry se-
quences, the dataset is divided into categories including ‘Road’,
‘City’, ‘Residential’, ‘Campus’, and ‘Person’. It comprises a
total of 22 stereo sequences, with sequences 00 — 10 offering
ground truth trajectories for training, sequences 11 — 21, how-
ever, are without ground truth. For the purpose of quantitative
evaluation, we choose to train and validate our model using the
sequences from 00 to 10. Given our focus on monocular VO, we
only use the left camera view.

B. Implementation Details

STDN-VO is implemented by PyTorch [34] and trained on a
single NVIDIA RTX 4090 GPU with a batch size of 4. During the
preprocessing phase, the input images were uniformly resized
to dimensions of 256 x 256 pixels, and their pixel values were
normalized to ensure consistency. STDN-VO consists of three
principal modules: feature extraction, decoder, and pose head.
The parameters of the feature extraction module are fixed, thus
exempting them from further training iterations. The remaining
two modules are actively engaged in the training process. We
implemented the AdamW optimizer [35], incorporating a weight
decay of 1e — 4, and employed the OneCycleLR scheduler [36].
The initial learning rates were set to 1e — 4. The loss weighting
parameter k£ was set to 100. We trained our model for 200 epochs
in total.

C. Evaluation of Visual Odometry

1) Evaluation on the KITTI dataset: The performance of the
trained STDN-VO is assessed based on the standard evaluation
metrics, including average translation errors 7, (in percent-
age), rotation errors R, (in degrees per 100 meters), absolute
trajectory error ATE (in meters), relative pose error (RPE) for
rotation (in degrees) and translation (in meters), average trans-
lational RMSE drift T'..; (in percentage), and average rotational
RMSE drift R,.; (in degrees per 100 meters). T, and T..; are
considered for all possible subsequences within a test sequence
of lengths (100, ..., 800) meters. Monocular methods suffer
from scale ambiguity when attempting to restore the real-world
scale. Prior works have utilized 7-DoF optimization [37], [38]
to address this issue by applying a scaling factor to align the
predicted poses to the ground truths. Following these works [17],
[18], [37], [38], we also applied a 7-DoF optimization in valida-
tion. The final metrics were calculated using the Python KITTI
evaluation toolbox, which was employed in TSformer-VO [18].
In this study, we conduct two training strategies.

Strategy 1: We employ the KITTI odometry sequences 00,
02, 08, and 09 for training and compare our method with recent
deep learning VO methods on sequences 01, 03, 04, 05, 06,
07, and 10. Table I offers a comprehensive comparison. The
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Fig. 2. Qualitative trajectory results on KITTI Odometry Sequences 03, 05,
07, and 10. EST: Estimation, GT: Ground Truth.

best values for each sequence among the deep learning methods
are highlighted in bold, while the second-best values are under-
scored. The average errors of the experiments are derived from
the mean of the scores across all sequences utilized for testing.
Compared with ORB-SLAM?2 [38], a traditional VO method,
STDN-VO showed advantage in T,.-(%) on sequences 01, 05
and 07. Compared with deep learning VO methods, STDN-VO
achieved superior performance in terms of T,,-(%) across all
sequences except for sequence 06. Evaluated with respect to
R, (°/100 m), STDN-VO surpassed these deep learning meth-
ods on sequences 01, 03, 05, 07, and 10. In terms of ATE(m),
STDN-VO is ranked the best on sequences 04, 05, 07, and 10.
Similarly, STDN-VO also showed a marked advantage in the
RPE(m) and T, (%) metrics, leading in performance across the
majority of test sequences. Nonetheless, when it comes to the
RPE(°) and R, (°/m) metrics, ORB-SLAM?2 continues to hold
a substantial lead over all other methods. Overall, the average
error achieved by STDN-VO is superior to all the deep learning
methods listed. The results demonstrated the effectiveness of
our model for VO estimation. Fig. 2 showcases the estimated
trajectories.

Strategy 2: In order to show that the performance of STDN-
VO is insensitive to training set, we employ a different training
set, i.e. sequences 00 — 08 in the KITTI dataset, for training
and compare STDN-VO with recent deep learning VO methods
on sequences 09, and 10. As illustrated in Table II, STDN-VO
achieved state-of-the-art performance among these methods in
terms of both average translation errors and average rotation er-
rors. Specifically, STDN-VO reduced T, (average translation
errors) from 9.880, as reported by Wang et al. [42], to 6.784
on sequence 09. Similarly, on sequence 10, STDN-VO lowered
Terr from 8.927, as achieved by SWformer-VO, to 7.730. In
terms of R.,, (average rotation errors), STDN-VO improved
the result from 3.340, as seen in Bian et al. [43], to 2.491 on
sequence 09. Furthermore, STDN-VO reduced average rotation
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TABLE I
QUANTITATIVE RESULTS ON KITTI ODOMETRY

Sequence

Evaluation Index Method Avg. Error
01 03 04 05 06 07 10
ORB-SLAM2 107.565  1.554 1.554 9.671 18.899 10.195 3.638 21.868
DeepVO 156.389  73.552  10.803  56.184 64.397 71.790  128.732 80.263
Terr(%) TSformer-VO 28.860 25.587 4.852 14.746 13.365 12.892 16.387 16.669
SWformer-VO 29.755  12.752 5312 7.651 12.978 10.586 9.672 12.672
STDN-VO(ours)  18.774 10984  4.158 5.716 20.242 6.780 7.125 10.540
ORB-SLAM2 0.888 0.182 0.267 0.243 0.234 0.327 0.322 0.351
DeepVO 10.036  15.671  3.849 29.898 31.395 50.508 21.465 23.260
Rerr(°/100m)J TSformer-VO 6.508 15484  2.947 5.713 4.409 8.611 5.072 6.963
SWformer-VO 6.769 8.600 1.978 3.322 4.030 8.795 4.677 5.453
STDN-VO(ours) 3.695 7.756 2.208 2.175 6.779 5.906 2.480 4.428
ORB-SLAM2 502.201 1.752 1.296 33.196 55.025 16.557 7.735 88.251
DeepVO 19981 11.744 3850  123.298 107.995  22.831 57.901 49.657
ATE(m)J) TSformer-VO 121760  24.118  3.487 59.480 33.047 29.824 25.045 42.388
SWformer-VO 130.065 19.005  4.340 37.518 39.062 27.084 18.293 39.338
STDN-VO(ours)  74.904  16.571  3.403 19.130 71.347 16.358 11.630 30.478
ORB-SLAM2 2.970 0.033 0.078 0.147 0.300 0.112 0.055 0.527
DeepVO 3.577 0.553 0.261 0.808 1.152 0.741 1.135 1.175
RPE(m)J TSformer-VO 0.688 0.124 0.105 0.129 0.167 0.143 0.159 0.216
SWformer-VO 0.679 0.109 0.110 0.109 0.173 0.112 0.118 0.201
STDN-VO(ours) 0.503 0.079 0.090 0.091 0.261 0.109 0.110 0.178
ORB-SLAM?2 0.098 0.053 0.079 0.057 0.057 0.049 0.067 0.065
DeepVO 0.440 0.438 0.137 0.535 0.476 0.703 0.580 0.472
RPE(°)} TSformer-VO 0.294 0.246 0.144 0.216 0.205 0.237 0.274 0.230
SWformer-VO 0.332 0.231 0.129 0.204 0.203 0.230 0.250 0.225
STDN-VO(ours) 0.196 0.119 0.063 0.099 0.129 0.111 0.137 0.122
ORB-SLAM2 96.058  90.621 98.124  61.974 66.043 60.086 83.719 79.518
DeepVO 161.347 92761 14743 90.068 93389  109.142  144.200 100.807
Tret(%)d TSformer-VO 67.694  30.163  29.427  17.639 19.181 14.608 21.883 28.656
SWformer-VO 66.860  17.117  14.344 8.953 16.988 11.421 16.512 21.742
STDN-VO(ours)  55.094  14.031 13.867 6.778 17.304 6.881 10.093 17.721
ORB-SLAM2 0.007 0.002 0.003 0.003 0.003 0.003 0.004 0.004
DeepVO 0.204 0.216 0.039 0.410 0.475 0.597 0.296 0.320
Ryer(®m)l TSformer-VO 0.103 0.159 0.031 0.069 0.053 0.101 0.061 0.082
SWformer-VO 0.101 0.099 0.020 0.038 0.052 0.097 0.052 0.066
STDN-VO(ours) 0.036 0.077 0.022 0.021 0.067 0.059 0.024 0.044

We present a comparison with representative VO methods. The first column enumerates the evaluation metrics, and the second column presents the names of
VO methods, including traditional and deep learning methods. The subsequent columns showcase the performance across various test sequences, along with
the computed average error. Bold: best result among the deep learning methods, underscore: second best result among the deep learning methods.

O - Seq 09

VO - Seq 10

—GT
~=-STDN-VO(w/o
-=-STDN-VO(w/o

_==-Architecture A
=="~ Architecture B
— STDN-VO(Our:

T
s)

s)

z[m]

TE [%]

—STDN-VO(Ours)

200 [ 260 260 660 800 200 [ 260 460 660
X [m X [m]
(a) Seq 09 (b) Seq 10
Fig. 3. Qualitative trajectory results on KITTI Odometry Sequences 09 and
10.

errors from 3.460, reported by Depth-VO-Feat [44], to 1.903 on
sequence 10. Fig. 3 showcases the estimated trajectories.
Strategy 3: To conduct a thorough assessment the perfor-
mance of STDN-VO, we trained the model on sequences 00 —
10 and subsequently tested it on sequences 11 — 21. The results
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Fig. 4. Qualitative trajectory results on KITTI Odometry Sequences 11-15.
TE: Translation Error, RE: Rotation Error, PL: Path Length.

were submitted to the KITTI official website for testing. On
sequences 11 to 21, the model achieved an average translation
error of 11.10 (%) and a rotation error of 0.023 (°/m). Fig. 4
illustrates the trajectories and corresponding error plots for
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TABLE IT
QUANTITATIVE RESULTS ON KITTI ODOMETRY SEQUENCES 09 AND 10

Sequence

Evaluation Index Method Avg. Error
09 10
SFMlearner [39] 17.840 37.910 27.875
Depth-VO-Feat 11.930 12.450 12.190
GeoNet [40] 41.470 32.740 37.105
Bian et al 11.200 10.100 10.650
Masked GANs [41] 12.830 13.580 13.205
tern (%)L Wang et al 9.880 12.240 11.060
SWformer-VO 12.114 8.927 10.520
STDN-VO(ours) 6.784  7.730 7.257
STDN-VO(w/o T) 42.049 37.979 40.014
STDN-VO(w/o S)  7.066  8.917 7.992
Architecture A 53.829 46.095 49.962
Architecture B 9.094 13.148 11.121
SFMlearner 6.780  17.780 12.280
Depth-VO-Feat 3910 3.460 3.685
GeoNet 13.140 13.120 13.130
Bian et al 3.340  4.960 4.150
Masked GANs 3.870  4.330 4.100
o Wang et al 3400 5.200 4.300
rerr(°/100m)} SWformer-VO 4.596  5.190 4.893
STDN-VO(ours) 2491 1903 2.197
STDN-VO(w/o T) 16.223 17.097 16.660
STDN-VO(w/o S)  2.663  3.598 3.131
Architecture A 17.365 24.050 20.708
Architecture B 3.834  7.041 5.438
Bold: best, underscore: second best.
TABLE III
COMPARISON OF TNFERENCE TIMES FOR ADVANCED METHODS ON THE KITTI
DATASET
Methods Avg. Time(s)
DeepVO 0.0587
TSformer-VO 0.0140
SWformer-VO 0.0186
STDN-VO(ours) 0.0389

sequences 11, 12, and 15, which are exclusively shown on the
KITTI website. The outcomes for each sequence consist of:

1) A trajectory graph that contrasts the ground truth trajec-
tory (marked by a red line) with the predicted trajectory
(marked by a blue line).

2) Errors are measured in percent (for translation) and in
degrees per meter (for rotation) across different trajectory
lengths and driving speeds.

For sequences 11 and 12, the translation error tends to es-
calate with longer path lengths and higher speeds. In contrast,
sequence 15 exhibits a reduction in translation error as both
path length and speed increase. Meanwhile, the rotation error
generally demonstrates a decreasing trend with increased path
length across these sequences.

Inference time: In our comparative analysis of the real-time
performance in visual odometry, we focused on the average
inference times of DeepVO, TSformer-VO, SWformer-VO,
and STDN-VO methods during pose estimation on the KITTI
dataset. The results, as presented in Table III, reveal that although
STDN-VO does not match the inference speed of TSformer-VO
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Fig. 5. Qualitative trajectory results on TUM Sequences ‘fr2/360 kidnap’ and
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Fig. 6. Qualitative trajectory results on EuRoC Sequences ‘MH_03_medium’
and ‘MH_05_difficult’.

and SWformer-VO, it outperforms DeepVO. Notably, STDN-
VO achieves highest accuracy among these methods, despite a
trade-off in terms of inference speed.

2) Evaluation on the TUM and EuRoC datasets: In order
to further assess the generalization ability of STDN-VO, we
tested its performance on the TUM and EuRoC datasets. The
TUM dataset was collected by hand-held cameras, capturing
data under challenging conditions in indoor environments. Ad-
ditionally, the EuRoC dataset contains 11 sequences captured
by a MAV in an indoor environment. These sequences are
divided into three levels of difficulty, with each level being
characterized by motion patterns and lighting conditions. We
evaluate the performance of STDN-VO in terms of ATE (in
meters). For the TUM dataset, we trained STDN-VO on the
same train split as in Xue et al [45]. Subsequently, we tested
STDN-VO on sequence ‘fr2/360 kidnap’ and ‘fr2/desk’. The
ATE values for these test sequences are 0.745 m and 1.031 m,
respectively. Fig. 5 illustrates the estimated trajectories. As to the
EuRoC dataset, we conducted tests on the ‘MH_03_medium’
and ‘MH_05_difficult’ sequences, utilizing the remaining se-
quences for training. The corresponding ATE values for these
test sequences are 1.115 m and 1.310 m, respectively. Fig. 6
presents the estimated trajectories.

D. Ablation Study

Both streams are indispensable in STDN-VO: To explore the
influence of each stream on the performance of STDN-VO, we
respectively remove one stream module from the dual-stream
architecture, while keeping the remaining stream untouched
(Fig. 7): (1) STDN-VO(w/o S), denoting STDN-VO without the
spatial stream, endures a slight decline in performance (Table II).
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To delve deeper into the spatial stream’s contribution to perfor-
mance, we visualize the spatial attention in ViT (Fig. 8(a)), uti-
lizing the Attention Rollout introduced in [46]. Here, the learned
attention focuses on the car and other critical spatial areas, while
ignoring the less relevant details. These results demonstrate the
importance of effective spatial information in enhancing the
performance of visual odometry estimation. (2) STDN-VO(w/o
T), referring to STDN-VO without the temporal stream, suffers
from a considerable decline in performance (Table IT). To further
investigate the temporal stream’s contribution to performance,
we visualize the typical response patterns of the output neurons
of ConvGRU as functions of velocities in space (Fig. 8(b)). The
activities of the output neurons of ConvGRU are selective to
particilar movement velocities. Given that velocity is the cause
of the changes between consecutive frames, Fig. 8(b) highlights
the capacity of the temporal stream to capture sequential de-
pendencies between images. These results demonstrate that VO
significantly relies on the sequential dependencies between con-
secutive frames. Therefore, the performance of VO is influenced
by effective spatial and temporal information, with the synergy
between these two streams being a pivotal characteristic of the
STDN-VO model.

Comparison of dual-stream and sequential integration archi-
tecture: To assess the influence of different integration strategies
of the two steams on VO, we conducted experiments to compare
with sequential integration architecture (Fig. 9(a)). STDN-VO
adopts parallel integration architecture (Fig. 1(b)), processing
both temporal and spatial information at the same time. The
sequential integration architecture (architecture A in Fig. 9(a))
provides an alternative solution, in which the output generated
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Fig. 9. Archetectures with sequential processing (a) or with degraded spatial
stream (b).

by the Transformer is seamlessly channeled into the GRU as
its input. As illustrated in Table II, the parallel architecture of
STDN-VO markedly outperforms architecture A. We calculated
the average Structural Similarity Index (SSIM) for the features
of the two consecutive frames fed into the GRU module. In
Architecture A, the average SSIM values were 0.990 and 0.989
for sequences 09 and 10, respectively. In contrast, STDN-VO ex-
hibited SSIM values of 0.868 and 0.873 for the same sequences.
The GRU in Architecture A is not sufficiently sensitive to the
subtle differences between highly similar features, which could
be leading to its poor performance. The results highlight the
effectiveness of the dual-stream architecture, which empowers
the model to capture both temporal and spatial information
simultaneously, achieving a more robust integration of infor-
mation.

Degrading of the spatial stream: ViT, empowered by its
self-attention mechanism, excels at capturing long-range depen-
dencies and spatial information. We explored the influence of
degraded spatial stream by replacing ViT with a CNN (Fig. 9(b)),
which is good at capturing local information in object level. The
CNN module comprises two convolutional layers, each with a
kernel size of 3, followed by two FC layers. All of these layers
are accompanied by a ReL.U activation function. Experimental
results, as detailed in Table II, reveal that the ViT module
surpasses the performance of the CNN. This finding underscores
the advantages of the ViT in acquiring spatial information over
CNNs in VO tasks.

V. CONCLUSION

In this letter, we harness a dual stream architecture, mimicking
the human visual system, to tackle monocular visual odometry.
The proposed model, STDN-VO, employs Swim Transformer
as the feature extractor and two parallel streams, i.e. spatial
stream and temporal stream, to capture spatiotemporal correla-
tion in image sequences. Subsequently, the outputs of the spatial
stream and the temporal stream are concatenated and fed to a
pose decoder to predict the 6-DoF relative pose. Experiments
conducted on the standard KITTI, TUM and EuRoC datasets
confirm the effectiveness of STDN-VO, showing robustness and
generalization ability. Compared with other recent deep learning
VO methods, STDN-VO achieved superior performance. In ad-
dition, ablation studies demonstrated the important role played
by the dual stream architecture in STDN-VO. In future research
endeavors, a focused effort will be dedicated to optimizing
inference times and simultaneously improving the accuracy of
the model.
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